Abstract
Abstract Aspect sentiment classification is an important research topic in natural language processing and computational linguistics, assisting in automatically review analysis and emotional tendency judgement. Different from extant methods that focus on text sequence representations, this paper presents a network framework to learn representation from concurrence-words relation graph (LRCWG), so as to improve the Macro-F1 and accuracy. The LRCWG first employs the multi-head attention mechanism to capture the sentiment representation from the sentences which can learn the importance of text sequence representation. And then, it leverages the priori sentiment dictionary information to construct the concurrence relations of sentiment words with Graph Convolution Network (GCN). This assists in that the learnt context representation can keep both the semantics integrity and the features of sentiment concurrence-words relations. The designed algorithm is experimentally evaluated with all the five benchmark datasets and demonstrated that the proposed aspect sentiment classification can significantly improve the prediction performance of learning task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.