Abstract

Access control policies are crucial in securing data in information systems. Unfortunately, often times, such policies are poorly documented, and gaps between their specification and implementation prevent the system users, and even its developers, from understanding the overall enforced policy of a system. To tackle this problem, we propose the first of its kind systematic approach for learning the enforced authorizations from a target system by interacting with and observing it as a black box. The black-box view of the target system provides the advantage of learning its overall access control policy without dealing with its internal design complexities. Furthermore, compared to the previous literature on policy mining and policy inference, we avoid exhaustive exploration of the authorization space by minimizing our observations. We focus on learning relationship-based access control (ReBAC) policy, and show how we can construct a deterministic finite automaton (DFA) to formally characterize such an enforced policy. We theoretically analyze our proposed learning approach by studying its termination, correctness, and complexity. Furthermore, we conduct extensive experimental analysis based on realistic application scenarios to establish its cost, quality of learning, and scalability in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.