Abstract

Recent deep learning-based Brain-Computer Interface (BCI) decoding algorithms mainly focus on spatial-temporal features, while failing to explicitly explore spectral information which is one of the most important cues for BCI. In this paper, we propose a novel regional attention convolutional neural network (RACNN) to take full advantage of spectral-spatial-temporal features for EEG motion intention recognition. Time-frequency based analysis is adopted to reveal spectral-temporal features in terms of neural oscillations of primary sensorimotor. The basic idea of RACNN is to identify the activated area of the primary sensorimotor adaptively. The RACNN aggregates a varied number of spectral-temporal features produced by a backbone convolutional neural network into a compact fixed-length representation. Inspired by the neuroscience findings that functional asymmetry of the cerebral hemisphere, we propose a region biased loss to encourage high attention weights for the most critical regions. Extensive evaluations on two benchmark datasets and real-world BCI dataset show that our approach significantly outperforms previous methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.