Abstract

This work develops an any-time path planner, based on the learning real-time A* (LRTA*) search, for generating flyable paths that allow an aircraft with a specified sensor footprint to sense a group of closely-spaced targets. The LRTA* algorithm searches a tree of flyable paths for the branch that accomplishes the desired objectives in the shortest distance. The tree of paths is created by assembling primitive turn and straight sections of a specified step size. The operating parameters for the LRTA* search directly influence the running time and path-length performance of the search. A modified LRTA* search is presented that terminates when there has been no improvement in the path for some number of iterations, resulting in a path planner that provides short-distance paths in short running times.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.