Abstract

In the fifth generation (5G) of mobile broadband systems, radio resource management (RRM) will reach unprecedented levels of complexity. To cope with the ever more sophisticated RRM functionalities and the growing variety of scenarios, while carrying out the prompt decisions required in 5G, this manuscript presents a lean RRM architecture that capitalizes on recent advances in the field of machine learning in combination with the large amount of data readily available in the network from measurements and system observations. The architecture consists of a learner (or a few), which learns RRM policies directly from the data gathered in the network using a single general-purpose learning framework, and a set of distributed actors, which execute RRM policies issued by the learner and repeatedly generate samples of experience. Thus, the complexity of RRM is shifted to the design of the learning framework, while the RRM algorithms derived from this framework are executed in a computationally efficient distributed manner at the radio access nodes. The potential of this approach is verified in a pair of pertinent scenarios, and future directions on applications of machine learning to RRM are discussed. Although we focus on a mobile broadband context, the concepts proposed hereafter extend to any radio access network technology where one can conceive the idea of a central learning unit gathering data from distributed actors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.