Abstract
Protein fold recognition refers to predicting the most likely fold type of the query protein and is a critical step of protein structure and function prediction. With the popularity of deep learning in bioinformatics, protein fold recognition has obtained impressive progress. In this study, to extract the fold-specific feature to improve protein fold recognition, we proposed a unified deep metric learning framework based on a joint loss function, termed NPCFold. In addition, we also proposed an integrated machine learning model based on the similarity of proteins in various properties, termed NPCFoldpro. Benchmark experiments show both NPCFold and NPCFoldpro outperform existing protein fold recognition methods at the fold level, indicating that our proposed strategies of fusing loss functions and fusing features could improve the fold recognition level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.