Abstract

The development of learning progressions is one approach for creating the types of coherent curriculum frameworks that have been identified as predictors for high-performing scores on international stem assessments. We have developed a learning progression that describes how secondary students may build more sophisticated understanding of the structure, properties, and behavior of matter, and that also outlines the connections and relationships among ideas needed to develop more expert understanding. We used data collected from 82 individual interviews with secondary students and from assessments administered to 4000 Us middle school students to characterize how learners select and apply ideas to explain a range of transformation of matter phenomena. We found that most students relied on a limited set of ideas in their explanations, but that with the proper support, even middle school students were able to appropriately integrate ideas involving the structure of matter, conservation, interactions, and energy to provide mechanistic explanations of transformation phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.