Abstract

Amyotrophic Lateral Sclerosis is a devastating neurodegenerative disease causing rapid degeneration of motor neurons and usually leading to death by respiratory failure. Since there is no cure, treatment's goal is to improve symptoms and prolong survival. Non-invasive Ventilation (NIV) is an effective treatment, leading to extended life expectancy and improved quality of life. In this scenario, it is paramount to predict its need in order to allow preventive or timely administration. In this work, we propose to use itemset mining together with sequential pattern mining to unravel disease presentation patterns together with disease progression patterns by analysing, respectively, static data collected at diagnosis and longitudinal data from patient follow-up. The goal is to use these static and temporal patterns as features in prognostic models, enabling to take disease progression into account in predictions and promoting model interpretability. As case study, we predict the need for NIV within 90, 180 and 365 days (short, mid and long-term predictions). The learnt prognostic models are promising. Pattern evaluation through growth rate suggests bulbar function and phrenic nerve response amplitude, additionally to respiratory function, are significant features towards determining patient evolution. This confirms clinical knowledge regarding relevant biomarkers of disease progression towards respiratory insufficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.