Abstract
Hardware-realizable learning probabilistic RAMs (pRAMs) which implement local reinforcement rules utilizing synaptic rather than threshold noise in the stochastic search procedure are described. The design allows for both global and local rewards and penalties (in this latter case implementing a modified version of backpropagation). The architecture allows for serial updating of the weights of a pRAM net according to a reward/penalty learning rule. It is possible to generate a new set of pRAM outputs at least every 100 mu s, which is faster than the response time of biological neurons. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.