Abstract

Background In recent years, schizophrenia has increasingly been recognized as a neurocognitive disorder, which has led to a growing literature on cognitive rehabilitation, and suggested several potential enhancements to cognitive function. For instance, it has been shown that executive functioning deficits as measured by the Wisconsin Card Sorting Test (WCST) can be modified in a subgroup of schizophrenic patients. The neurobiological basis of cognitive remediation has not been elucidated so far, although structural, functional and metabolic abnormalities of the prefrontal cortex have been associated with cognitive impairment. Methods In this study, learning potential was investigated in 43 schizophrenic patients and 37 age- and education-matched healthy controls, using a dynamic version of the WCST, which integrates instructions and feedback into the testing procedure. Performance was related to cerebral metabolism, assessed by single-voxel proton magnetic resonance spectroscopy of the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate cortex (ACC). Results N-acetylaspartate (NAA), a marker of neuronal integrity, was significantly reduced in the DLPFC of schizophrenic patients as compared to the healthy control group. The level of NAA in the DLPFC positively correlated with performance in the dynamic WCST in healthy subjects, whereas in schizophrenic patients a significant correlation was observed between NAA and glutamate/glutamine in the ACC and learning potential. Conclusion These data imply a relationship between neuronal plasticity as assessed by learning potential and NAA levels of the prefrontal cortex in schizophrenic patients and healthy subjects, and suggest the involvement of differential neuronal networks in learning for schizophrenic patients compared to healthy controls.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call