Abstract
In this paper, we trained a set of Portuguese clinical word embedding models of different granularities from multi-specialty and multi-institutional clinical narrative datasets. Then, we assessed their impact on a downstream biomedical NLP task of Urinary Tract Infection disease identification. Additionally, we intrinsically evaluated our main model using an adapted version of Bio-SimLex for the Portuguese language. Our empirical results showed that the larger, coarse-grained model achieved a slightly better outcome when compared with the small, fine-grained model in the proposed task. Moreover, we obtained satisfactory results with Bio-SimLex intrinsic evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.