Abstract
This paper proposes an approach for hurricane damage level prediction using semantic web resources and matrix completion algorithms. Based on the statistical unit node set framework, streaming data from five hurricanes and damage levels from 48 counties in the USA were collected from the SRBench dataset and other web resources, and then trans-coded into matrices. At a time t, the pattern of possible highest damage levels at 6 hours into the future was estimated using a multivariate regression procedure based on singular value decomposition. We also applied soft-impute algorithm and k-nearest neighbours concept to improve the statistical unit node set framework in this research domain. Results showed that the model could deal with inaccurate, inconsistent and incomplete streaming data that were highly sparse, to learn future damage patterns and perform forecasting in near real-time. It was able to estimate the damage levels in several scenarios even if two-thirds of the relevant weather information was unavailable. The contributions of this work will be able to promote the applicability of the semantic web in the context of climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.