Abstract
With the rapid advancement of information and communication technologies, e-learning has gained a considerable attention in recent years. Many researchers have attempted to develop various e-learning systems with personalized learning mechanisms for assisting learners so that they can learn more efficiently. In this context, curriculum sequencing is considered as an important concern for developing more efficient personalized e-learning systems. A more effective personalized e-learning recommender system should recommend a sequence of learning materials called learning path, in an appropriate order with a starting and ending point, rather than a sequence of unordered learning materials. Further the recommended sequence should also match the learner preferences for enhancing their learning capabilities. Moreover, the length of recommended sequence cannot be fixed for each learner because these learners differ from one another in their preferences such as knowledge levels, learning styles, emotions, etc. In this paper, we present an effective learning path recommendation system (LPRS) for e-learners through a variable length genetic algorithm (VLGA) by considering learners’ learning styles and knowledge levels. Experimental results are presented to demonstrate the effectiveness of the proposed LPRS in e-learning environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.