Abstract

Personalized learning path considers matching symmetrical attributes from both learner and learning material. The evolutionary algorithm approach usually forms the learning path generation problem into a problem that optimizes the matching degree of the learner and the generated learning path. The proposed work considers the matching of the following symmetrical attributes of learner/material: ability level/difficulty level, learning objective/covered concept, learning style/supported learning styles, and expected learning time/required learning time. The prerequisites of material are considered constraints. A variable-length representation of the learning path is adopted based on floating numbers, which significantly reduces the encoding length and simplifies the learning path generating process. An improved differential evolution algorithm is applied to optimize the matching degree of learning path and learner. The quantitative experiments on different problem scales show that the proposed system outperforms the binary-based representation approaches in scaling ability and outperforms the comparative algorithms in efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.