Abstract
Model identification for physiological systems is complicated by changes between operating regimes and measurement artifacts. We present a solution to these problems by assuming that a cohort of physiological time series is generated by switching among a finite collection of physiologically-constrained dynamical models and artifactual segments. We model the resulting time series using the switching linear dynamical systems (SLDS) framework, and present a novel learning algorithm for the class of SLDS, with the objective of identifying time series dynamics that are predictive of physiological regimes or outcomes of interest. We present exploratory results based on a simulation study and a physiological classification example of decoding postural changes from heart rate and blood pressure. We demonstrate a significant improvement in classification over methods based on feature learning via expectation maximization. The proposed learning algorithm is general, and can be extended to other applications involving state-space formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.