Abstract

We address the problem of multimodal image registration using a supervised learning approach. We pose the problem as a regression task, whose goal is to estimate the unknown geometric transformation from the joint appearance of the fixed and moving images. Our method is based on (i) context-aware features, which allow us to guide the registration using not only local, but also global structural information, and (ii) regression forests to map the very large contextual feature space to transformation parameters. Our approach improves the capture range, as we demonstrate on the publicly available IXI dataset. Furthermore, it can also handle difficult settings where other similarity metrics tend to fail; for instance, we show results on the deformable registration of Intravascular Ultrasound (IVUS) and Histology images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.