Abstract

Despite being a relatively new communication technology, Low-Power Wide Area Networks (LPWANs) have shown their suitability to empower a major part of Internet of Things applications. Nonetheless, most LPWAN solutions are built on star topology (or single-hop) networks, often causing lifetime shortening in stations located far from the gateway. In this respect, recent studies show that multi-hop routing for uplink communications can reduce LPWANs' energy consumption significantly. However, it is a troublesome task to identify such energetically optimal routing through trial-and-error brute-force approaches because of time and, especially, energy consumption constraints. In this work we show the benefits of facing this exploration/exploitation problem by running centralized variations of the multi-arm bandit's e-greedy, a well-known online decision-making method that combines best known action selection and knowledge expansion. Important energy savings are achieved when proper randomness parameters are set, which are often improved when conveniently applying similarity, a concept introduced in this work that allows harnessing the gathered knowledge by sporadically selecting unexplored routing combinations akin to the best known one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.