Abstract
This work presents a general framework of agent negotiation with opponent learning via fuzzy constraint-directed approach. The fuzzy constraint-directed approach involves the fuzzy probability constraint and the fuzzy instance reasoning. The proposed approach via fuzzy probability constraint can not only cluster the opponent's information in negotiation process as proximate regularities to improve the convergence of behavior patterns, but also eliminate the noisy hypotheses or beliefs to enhance the effectiveness on beliefs learning. By using fuzzy instance method, our approach can reuse the prior opponent knowledge to speed up the problem-solving, and reason the proximate regularities to acquire desirable results on predicting opponent behavior. In addition, the proposed interaction method enables the agent to make a concession dynamically based on expected objectives. Moreover, experimental results suggest that the proposed framework allows an agent to achieve a higher reward, a fairer deal, or a smaller cost of negotiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.