Abstract
Fuzzy cognitive maps (FCMs), characterized by a great deal of abstraction, flexibility, adaptability, and fuzzy reasoning, are widely used tools for modeling dynamic systems and decision support systems. Research on the problem of finding sparse FCMs from observed data is outstanding. Evolutionary algorithms (EAs) play a key role in learning FCMs from time series without expert knowledge. In this paper, we first involve sparsity penalty in the objective function optimized by EAs. To improve the performance of EAs, we develop an effective initialization operator based on the Lasso, a convex optimization approach. Comparative experiments on synthetic data with varying sizes and densities compared with other state-of-the-art methods demonstrate the effectiveness of the proposed approach. Moreover, the proposed initialization operator is able to promote to performance of EAs in learning sparse FCMs from time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.