Abstract

A linear term tree is defined as an edge-labeled rooted tree pattern with ordered children and internal structured variables whose labels are mutually distinct. A variable can be replaced with arbitrary edge-labeled rooted ordered trees. We consider the polynomial time learnability of finite unions of linear term trees in the exact learning model formalized by Angluin. The language L(t) of a linear term tree t is the set of all trees obtained from t by substituting arbitrary edge-labeled rooted ordered trees for all variables in t. Moreover, for a finite set S of linear term trees, we define L(S) = ∪t∈SL(t). A target of learning, denoted by T*, is a finite set of linear term trees, where the number of edge labels is infinite. In this paper, for any set T* of m linear term trees (m ≥ 0), we present a query learning algorithm which exactly identifies T* in polynomial time using at most 2mn2Restricted Subset queries and at most m + 1 Equivalence queries, where n is the maximum size of counterexamples. Finally, we note that finite sets of linear term trees are not learnable in polynomial time using Restricted Equivalence, Membership and Subset queries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.