Abstract

In order to improve robust operating performance and enhance bus voltage stability, a learning observer-based fault-tolerant control strategy is proposed for the distributed generation in islanded microgrid with sensor faults and uncertain disturbances. Firstly, the output feedback control theory and the linear matrix inequality method are used to design closed-loop controller for the voltage source inverter of distributed generation; secondly, a fault-tolerant model and control structure of the distributed generation in an islanded microgrid with sensor faults is analyzed. By employing the fault output signal conversion filter and proportional derivative type learning observer, the online estimation and real-time compensation of the sensor fault signal are realized. Thirdly, the system synthesis of output feedback control and fault-tolerant control is completed. Finally, the multi-scenario sensor fault scheme simulation experiment verifies that the proposed control strategy has strong sensor fault tolerance and adaptability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call