Abstract

In this paper we study the problem of learning phylogenies and hidden Markov models. We call a Markov model nonsingular if all transition matrices have determinants bounded away from 0 (and 1). We highlight the role of the nonsingularity condition for the learning problem. Learning hidden Markov models without the nonsingularity condition is at least as hard as learning parity with noise, a well-known learning problem conjectured to be computationally hard. On the other hand, we give a polynomial-time algorithm for learning nonsingular phylogenies and hidden Markov models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.