Abstract
Tensor canonical polyadic decomposition (CPD) with nonnegative factor matrices, which extracts useful latent information from multidimensional data, has found wide-spread applications in various big data analytic tasks. Currently, the implementation of most existing algorithms needs the knowledge of tensor rank. However, this information is practically unknown and difficult to acquire. To address this issue, a probabilistic approach is taken in this paper. Different from previous works, this paper firstly introduces a sparsity-promoting nonnegative Gaussian-gamma prior, based on which a novel probabilistic model for the CPD problem with nonnegative and continuous factors is established. This probabilistic model further enables the derivation of an efficient inference algorithm that accurately learns the nonnegative factors from the tensor data, along with an integrated feature of automatic rank determination. Numerical results using synthetic data and real-world applications are presented to show the remarkable performance of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.