Abstract
Nowadays, one of the most changeling points in statistics is the analysis of high dimensional data. In such cases, it is commonly assumed that the dimensionality of the data is only artificially high: although each data point is described by thousands of features, it is assumed that it can be modeled as a function of only a few underlying parameters. Formally, it is assumed that the data points are samples from a low-dimensional manifold embedded in a high-dimensional space.In this paper, we discuss a recently proposed method, known as Maximum Entropy Unfolding (MEU), for learning non-linear structures that characterize high dimensional data.This method represents a new perspective on spectral dimensionality reduction and, joined with the theory of Gaussian Markov random fields, provides a unifying probabilistic approach to spectral dimensionality reduction techniques. Parameter estimation as well as approaches to learning the structure of the GMRF are discussed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.