Abstract

Node embedding techniques have gained prominence since they produce continuous and low-dimensional features, which are effective for various tasks. Most existing approaches learn node embeddings by exploring the structure of networks and are mainly focused on static non-attributed graphs. However, many real-world applications, such as stock markets and public review websites, involve bipartite graphs with dynamic and attributed edges, called attributed interaction graphs. Different from conventional graph data, attributed interaction graphs involve two kinds of entities (e.g. investors/stocks and users/businesses) and edges of temporal interactions with attributes (e.g. transactions and reviews). In this paper, we study the problem of node embedding in attributed interaction graphs. Learning embeddings in interaction graphs is highly challenging due to the dynamics and heterogeneous attributes of edges. Different from conventional static graphs, in attributed interaction graphs, each edge can have totally different meanings when the interaction is at different times or associated with different attributes. We propose a deep node embedding method called IGE (Interaction Graph Embedding). IGE is composed of three neural networks: an encoding network is proposed to transform attributes into a fixed-length vector to deal with the heterogeneity of attributes; then encoded attribute vectors interact with nodes multiplicatively in two coupled prediction networks that investigate the temporal dependency by treating incident edges of a node as the analogy of a sentence in word embedding methods. The encoding network can be specifically designed for different datasets as long as it is differentiable, in which case it can be trained together with prediction networks by back-propagation. We evaluate our proposed method and various comparing methods on four real-world datasets. The experimental results prove the effectiveness of the learned embeddings by IGE on both node clustering and classification tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.