Abstract
This paper proposes latent representation models for improving network anomaly detection. Well-known anomaly detection algorithms often suffer from challenges posed by network data, such as high dimension and sparsity, and a lack of anomaly data for training, model selection, and hyperparameter tuning. Our approach is to introduce new regularizers to a classical autoencoder (AE) and a variational AE, which force normal data into a very tight area centered at the origin in the nonsaturating area of the bottleneck unit activations. These trained AEs on normal data will push normal points toward the origin, whereas anomalies, which differ from normal data, will be put far away from the normal region. The models are very different from common regularized AEs, sparse AE, and contractive AE, in which the regularized AEs tend to make their latent representation less sensitive to changes of the input data. The bottleneck feature space is now used as a new data representation. A number of one-class learning algorithms are used for evaluating the proposed models. The experiments testify that our models help these classifiers to perform efficiently and consistently on high-dimensional and sparse network datasets, even with relatively few training points. More importantly, the models can minimize the effect of model selection on these classifiers since their performance is insensitive to a wide range of hyperparameter settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.