Abstract
Programming a robot to perform tasks in dynamic environments is a complex process. Teleo-Reactive Programs (TRPs) have proved to be an effective framework to continuously perform a set of actions to achieve particular goals and react in the presence of unexpected events, however, their definition is a difficult and time-consuming process. In this paper, it is shown how a robot can learn TRPs from human guided traces. A user guides a robot to perform a task and the robot learns how to perform such task in similar dynamic environments. Our approach follows three steps: (i) it transforms traces with low-level sensor information into high-level traces based on natural landmarks, (ii) it learns TRPs that express when to perform an action to achieve simple tasks using an Inductive Logic Programming (ILP) system, and (iii) it learns hierarchical TRPs that express how to achieve goals by following particular sequences of actions using a grammar induction algorithm. The learned TRPs were used to solve navigation tasks in different unknown and dynamic environments, both in simulation and in a service robot called Markovito.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.