Abstract
Genetic adaptation to external stimuli occurs through the combined action of mutation and selection. A central problem in genetics is to identify loci responsive to specific selective pressures. Over the last two decades, many tests have been proposed to identify genomic signatures of natural selection. However, the power of these tests changes unpredictably from one dataset to another, with no single dominant method. We build upon recent work that connects many of these tests in a common framework, by describing how positive selection strongly impacts the observed site frequency spectrum (SFS). Many of the proposed tests quantify the skew in SFS to predict selection. Here, we show that the skew depends on many parameters, including the selection coefficient, and time since selection. Moreover, for each of the different regimes of positive selection, informative features of the scaled SFS can be learned from simulated data and applied to population-scale variation data. Using support vector machines, we develop a test that is effective over all selection regimes. On simulated datasets, our test outperforms existing ones over the entire parameter space. We apply our test to variation data from Drosophila melanogaster populations adapted to hypoxia, and identify new loci that were missed by previous approaches, but strengthen the role of the Notch pathway in hypoxia tolerance.KeywordsSupport Vector MachineDirectional SelectionNotch PathwaySelective SweepGenomic SignatureThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.