Abstract

This paper explores a fundamental problem in music emotion analysis, i.e., how to segment the music sequence into a set of basic emotive units, which are named as emotion primitives. Current works on music emotion analysis are mainly based on the fixed-length music segments, which often leads to the difficulty of accurate emotion recognition. Short music segment, such as an individual music frame, may fail to evoke emotion response. Long music segment, such as an entire song, may convey various emotions over time. Moreover, the minimum length of music segment varies depending on the types of the emotions. To address these problems, we propose a novel method dubbed supervised dynamic clustering (SDC) to automatically decompose the music sequence into meaningful segments with various lengths. First, the music sequence is represented by a set of music frames. Then, the music frames are clustered according to the valence-arousal values in the emotion space. The clustering results are used to initialize the music segmentation. After that, a dynamic programming scheme is employed to jointly optimize the subsequent segmentation and grouping in the music feature space. Experimental results on standard dataset show both the effectiveness and the rationality of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.