Abstract

Anomaly event detection in crowd scenes is extremely important; however, the majority of existing studies merely use hand-crafted features to detect anomalies. In this study, a novel unsupervised deep learning framework is proposed to detect anomaly events in crowded scenes. Specifically, low-level visual features, energy features, and motion map features are simultaneously extracted based on spatiotemporal energy measurements. Three convolutional restricted Boltzmann machines are trained to model the mid-level feature representation of normal patterns. Then a multimodal fusion scheme is utilized to learn the deep representation of crowd patterns. Based on the learned deep representation, a one-class support vector machine model is used to detect anomaly events. The proposed method is evaluated using two available public datasets and compared with state-of-the-art methods. The experimental results show its competitive performance for anomaly event detection in video surveillance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.