Abstract

Bayesian networks have been widely used in many scientific fields for describing the conditional independence relationships for a large set of random variables. This letter proposes a novel algorithm, the so-called p-learning algorithm, for learning moral graphs for high-dimensional Bayesian networks. The moral graph is a Markov network representation of the Bayesian network and also the key to construction of the Bayesian network for constraint-based algorithms. The consistency of the p-learning algorithm is justified under the small-n, large-p scenario. The numerical results indicate that the p-learning algorithm significantly outperforms the existing ones, such as the PC, grow-shrink, incremental association, semi-interleaved hiton, hill-climbing, and max-min hill-climbing. Under the sparsity assumption, the p-learning algorithm has a computational complexity of O(p2) even in the worst case, while the existing algorithms have a computational complexity of O(p3) in the worst case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.