Abstract

This paper proposes a deep learning-based method for image restoration given an inaccurate knowledge of the degradation. We first show how the impulse response of a Wiener filter can approximate the Moore-Penrose pseudo-inverse of the blur convolution operator. The deconvolution problem is then cast as the learning of a residual in the null space of the blur kernel, which, when added to the Wiener restoration, will satisfy the image formation model. This approach is expected to make the network capable of dealing with different blurs since only residuals associated with the Wiener filter have to be learned. Artifacts caused by inaccuracies in the blur estimation and other image formation model inconsistencies are removed by a Dynamic Filter Network. The extensive experiments carried out on several synthetic and real image datasets assert the proposed method's performance and robustness and demonstrate the advantage of the proposed method over existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.