Abstract
The problem of real-time extraction of meaningful patterns from time-changing data streams is of increasing importance for the machine learning and data mining communities. Regression in time-changing data streams is a relatively unexplored topic, despite the apparent applications. This paper proposes an efficient and incremental stream mining algorithm which is able to learn regression and model trees from possibly unbounded, high-speed and time-changing data streams. The algorithm is evaluated extensively in a variety of settings involving artificial and real data. To the best of our knowledge there is no other general purpose algorithm for incremental learning regression/model trees able to perform explicit change detection and informed adaptation. The algorithm performs online and in real-time, observes each example only once at the speed of arrival, and maintains at any-time a ready-to-use model tree. The tree leaves contain linear models induced online from the examples assigned to them, a process with low complexity. The algorithm has mechanisms for drift detection and model adaptation, which enable it to maintain accurate and updated regression models at any time. The drift detection mechanism exploits the structure of the tree in the process of local change detection. As a response to local drift, the algorithm is able to update the tree structure only locally. This approach improves the any-time performance and greatly reduces the costs of adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.