Abstract
A learning model predictive controller for iterative tasks is presented. The controller is reference-free and is able to improve its performance by learning from previous iterations. A safe set and a terminal cost function are used in order to guarantee recursive feasibility and nondecreasing performance at each iteration. This paper presents the control design approach, and shows how to recursively construct terminal set and terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.