Abstract

Recent years have seen a surge of interest in Statistical Relational Learning (SRL) models that combine logic with probabilities. One prominent example is Markov Logic Networks (MLNs). While MLNs are indeed highly expressive, this expressiveness comes at a cost. Learning MLNs is a hard problem and therefore has attracted much interest in the SRL community. Current methods for learning MLNs follow a two-step approach: first, perform a search through the space of possible clauses and then learn appropriate weights for these clauses. We propose to take a different approach, namely to learn both the weights and the structure of the MLN simultaneously. Our approach is based on functional gradient boosting where the problem of learning MLNs is turned into a series of relational functional approximation problems. We use two kinds of representations for the gradients: clause-based and tree-based. Our experimental evaluation on several benchmark data sets demonstrates that our new approach can learn MLNs as good or better than those found with state-of-the-art methods, but often in a fraction of the time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.