Abstract
Image-based localization plays an important role in today's autonomous driving technologies. However, in large scale outdoor environments, challenging conditions, e.g., lighting changes or different weather, heavily affect image appearance and quality. As a key component of feature-based visual localization, image feature detection and matching deteriorate severely and cause worse localization performance. In this paper, we propose a novel method for robust image feature matching under drastically changing outdoor environments. In contrast to existing approaches which try to learn robust feature descriptors, we train a deep network that outputs the low-rank representations of the images where the undesired variations on the images are removed, and perform feature extraction and matching on the learned low-rank space. We demonstrate that our learned low-rank images largely improve the performance of image feature matching under varying conditions over a long period of time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.