Abstract
Dictionary learning plays a crucial role in sparse representation based image classification. In this paper, we propose a novel approach to learn a discriminative dictionary with low-rank regularization on the dictionary. Specifically, we apply Fisher discriminant function to the coding coefficients to make the dictionary more discerning, that is, a small ratio of the within-class scatter to between-class scatter. In practice, noisy information in the training samples will undermine the discriminative ability of the dictionary. Inspired by the recent advances in low-rank matrix recovery theory, we apply low-rank regularization on the dictionary to tackle this problem. The iterative projection method (IPM) and inexact augmented Lagrange multiplier (ALM) algorithm are adopted to solve our objective function. The proposed discriminative dictionary learning with low-rank regularization (D2L2R2) approach is evaluated on four face and digit image datasets in comparison with existing representative dictionary learning and classification algorithms. The experimental results demonstrate the superiority of our approach.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.