Abstract

We propose accurate and computationally efficient procedures to calibrate fluorescence microscopes from micro-beads images. The designed algorithms present many original features. First, they allow to estimate space-varying blurs, which is a critical feature for large fields of views. Second, we propose a novel approach for calibration: instead of describing an optical system through a single operator, we suggest to vary the imaging conditions (temperature, focus, active elements) to get indirect observations of its different states. Our algorithms then allow to represent the microscope responses as a low-dimensional convex set of operators. This approach is deemed as an essential step towards the effective resolution of blind inverse problems. We illustrate the potential of the methodology by designing a procedure for blind image deblurring of point sources and show a massive improvement compared to alternative deblurring approaches both on synthetic and real data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.