Abstract

Gender recognition is one of fundamental face analysis tasks. Most of the existing studies have focused on face images acquired under controlled conditions. However, real-world applications require gender classification on real-life faces, which is much more challenging due to significant appearance variations in unconstrained scenarios. In this paper, we investigate gender recognition on real-life faces using the recently built database, the Labeled Faces in the Wild (LFW). Local Binary Patterns (LBP) is employed to describe faces, and Adaboost is used to select the discriminative LBP features. We obtain the performance of 94.81% by applying Support Vector Machine (SVM) with the boosted LBP features. The public database used in this study makes future benchmark and evaluation possible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.