Abstract
To defy the curse of dimensionality, the inputs are always projected from the original high-dimensional space into the target low-dimension space for feature extraction. However, due to the existence of noise and outliers, the feature extraction task for corrupted data is still a challenging problem. Recently, a robust method called low rank embedding (LRE) was proposed. Despite the success of LRE in experimental studies, it also has many disadvantages: 1) The learned projection cannot quantitatively interpret the importance of features. 2) LRE does not perform data reconstruction so that the features may not be capable of holding the main energy of the original "clean" data. 3) LRE explicitly transforms error into the target space. 4) LRE is an unsupervised method, which is only suitable for unsupervised scenarios. To address these problems, in this paper, we propose a novel method to exploit the latent discriminative features. In particular, we first utilize an orthogonal matrix to hold the main energy of the original data. Next, we introduce an l2,1 -norm term to encourage the features to be more compact, discriminative and interpretable. Then, we enforce a columnwise l2,1 -norm constraint on an error component to resist noise. Finally, we integrate a classification loss term into the objective function to fit supervised scenarios. Our method performs better than several state-of-the-art methods in terms of effectiveness and robustness, as demonstrated on six publicly available datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.