Abstract

We consider the problem of separating error messages generated in large distributed data center networks into error events. In such networks, each error event leads to a stream of messages generated by hardware and software components affected by the event. These messages are stored in a giant message log. We consider the unsupervised learning problem of identifying the signatures of events that generated these messages; here, the signature of an error event refers to the mixture of messages generated by the event. One of the main contributions of the paper is a novel mapping of our problem which transforms it into a problem of topic discovery in documents. Events in our problem correspond to topics and messages in our problem correspond to words in the topic discovery problem. However, there is no direct analog of documents. Therefore, we use a non-parametric change-point detection algorithm, which has linear computational complexity in the number of messages, to divide the message log into smaller subsets called episodes, which serve as the equivalents of documents. After this mapping has been done, we use a well-known algorithm for topic discovery, called LDA, to solve our problem. We theoretically analyze the change-point detection algorithm, and show that it is consistent and has low sample complexity. We also demonstrate the scalability of our algorithm on a real data set consisting of $97$ million messages collected over a period of $15$ days, from a distributed data center network which supports the operations of a large wireless service provider.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.