Abstract

In this paper, we present a method for learning an underlying graph topology using observed graph signals as training data. The novelty of our method lies on the combination of two assumptions that are imposed as constraints to the graph learning process: i) the standard assumption used in the literature that signals are smooth with respect to graph structure (i.e. small signal variation at adjacent nodes), with ii) the additional assumption that signals are bandlimited, which implies sparsity in the signals’ representation in the spectral domain. The latter assumption affects the inference of the whole eigenvalue decomposition of the Laplacian matrix and leads to a challenging new optimization problem. The conducted experimental evaluation shows that the proposed algorithm to solve this problem outperforms a reference state-of-the-art method that is based only on the smoothness assumption, when compared in the graph learning task on synthetic and real graph signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.