Abstract

3D shape determines an object's physical properties to a large degree. In this article, we introduce an autonomous learning system for categorizing 3D shape of simulated objects from single views. The system extends an unsupervised bottom-up learning architecture based on the slowness principle with top-down information derived from the physical behavior of objects. The unsupervised bottom-up learning leads to pose invariant representations. Shape specificity is then integrated as top-down information from the movement trajectories of the objects. As a result, the system can categorize 3D object shape from a single static object view without supervised postprocessing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.