Abstract
One of the long-standing difficulties in machine learning involves distortions present in data – different input feature vectors may represent the same entity. This observation has led to the introduction of invariant machine learning methods, for example techniques that ignore shifts, rotations, or light and pose changes in images. These approaches typically utilize pre-defined invariant features or invariant kernels, and require the designer to analyze what type of distortions are to be expected. While specifying possible sources of variance is straightforward for images, it is more difficult in other domains. Here, we focus on learning an invariant representation from data, without any information of what the distortions present in the data, only based on information whether any two samples are distorted variants of the same entity, or not. In principle, standard neural network architectures should be able to learn the invariance from data, given sufficient numbers of examples of it. We report that, somewhat surprisingly, learning to approximate even a simple types of invariant representation is difficult. We then propose a new type of layer, with a richer output representation, one that is better suited for learning invariances from data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.