Abstract
We introduce and analyze a method of learning-informed parameter identification for partial differential equations (PDEs) in an all-at-once framework. The underlying PDE model is formulated in a rather general setting with three unknowns: physical parameter, state and nonlinearity. Inspired by advances in machine learning, we approximate the nonlinearity via a neural network, whose parameters are learned from measurement data. The latter is assumed to be given as noisy observations of the unknown state, and both the state and the physical parameters are identified simultaneously with the parameters of the neural network. Moreover, diverging from the classical approach, the proposed all-at-once setting avoids constructing the parameter-to-state map by explicitly handling the state as additional variable. The practical feasibility of the proposed method is confirmed with experiments using two different algorithmic settings: A function-space algorithm based on analytic adjoints as well as a purely discretized setting using standard machine learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.