Abstract
Olfactory-discrimination learning results with a series of intrinsic and excitatory synaptic modifications in piriform cortex pyramidal neurons. Here we show that such learning results with long-lasting enhancement of inhibitory synaptic transmission onto proximal dendrites of these pyramidal neurons. Such enhancement is mediated by a strong hyperpolarizing shift in the reversal potential of fast inhibitory postsynaptic potentials (fIPSPs). Moreover, paired-pulse depression of these IPSPs, indicating enhanced GABA release, is also apparent after learning. We suggest that learning is accompanied by long-lasting enhancement of synaptic inhibition onto excitatory neurons, thus compensating for the increase of excitation in these neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.