Abstract
Subjects observe a private signal and make an initial guess; they then observe their neighbors’ guesses, update their own guess, and so forth. We study learning dynamics in three large-scale networks capturing features of real-world social networks: Erdös–Rényi, Stochastic Block (reflecting network homophily), and Royal Family (that accommodates both highly connected celebrities and local interactions). We find that the Royal Family network is more likely to sustain incorrect consensus and that the Stochastic Block network is more likely to persist with diverse beliefs. These patterns are consistent with the predictions of DeGroot updating. It lends support to the notion that the use of simple heuristics in information aggregation is prevalent in large and complex networks. This paper was accepted by Yan Chen, behavioral economics and decision analysis. Funding: The authors thank the Keynes Fund (University of Cambridge), the Creative-Pioneering Researchers Program (Seoul National University), and C-BID (NYUAD) for financial support. Supplemental Material: The data files and e-companion are available at https://doi.org/10.1287/mnsc.2023.4680 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.