Abstract

Fictitious play is a classical learning process for games, and games with strategic complementarities are an important class including many economic applications. Knowledge about convergence properties of fictitious play in this class of games is scarce, however. Beyond games with a unique equilibrium, global convergence has only been claimed for games with diminishing returns [V. Krishna, Learning in games with strategic complementarities, HBS Working Paper 92-073, Harvard University, 1992]. This result remained unpublished, and it relies on a specific tie-breaking rule. Here we prove an extension of it by showing that the ordinal version of strategic complementarities suffices. The proof does not rely on tie-breaking rules and provides some intuition for the result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.