Abstract

BackgroundSpray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior.Methodology/Principal FindingsAn improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment.Conclusions/SignificanceA decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions. Organosilicone spray adjuvants may therefore contribute to the ongoing global decline in honey bee health.

Highlights

  • Colony Collapse Disorder (CCD) continues to be a major threat to honey bees worldwide

  • Dyne-Amic did not cause a significant reduction in learning at concentrations of 0.1% and 0.5%

  • This study addresses the possibility that spray adjuvants impair olfactory learning, and thereby may contribute to disappearing honey bees that characterizes CCD and other bee decline syndromes

Read more

Summary

Introduction

Colony Collapse Disorder (CCD) continues to be a major threat to honey bees worldwide. Colony losses in the USA have averaged 30%, 34%, 29%, 36%, and 32% in the winters of 2010–2011, 2009–2010, 2008–2009, 2007–2008, and 2006– 2007, respectively [1] These figures do not include non-winter colony losses that represent a broader decline of honey bees and other pollinators worldwide. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.