Abstract

Consider a finite stage game G that is repeated infinitely often. At each time, the players have hypotheses about their opponents' repeated game strategies. They frequently test their hypotheses against the opponents' recent actions. When a hypothesis fails a test, a new one is adopted. Play is almost rational in the sense that, at each point in time, the players' strategies are ϵ-best replies to their beliefs. We show that, at least 1− ϵ of the time t these hypothesis testing strategies constitute an ϵ-equilibrium of the repeated game from t on; in fact the strategies are close to being subgame perfect for long stretches of time. This approach solves the problem of learning to play equilibrium with no prior knowledge (even probabilistic knowledge) of the opponents' strategies or their payoffs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.